DeepSeek WebUI Installation using Ollama in Nvidia Jetson Nano

This blog shows you how to set up DeepSeek-R1, a powerful local reasoning model, using Ollama and Open WebUI interface simillar to ChatGPT.

Prerequisites

  • Python 3.11 or higher
  • Conda package manager
  • Admin/sudo privileges for installation
  • 8GB RAM minimum (16GB+ recommended)
  • Note: The demo is tested in Linux/Ubuntu OS

Step-by-Step Installation Guide

1. Create and Activate Conda Environment

First, set up a dedicated virtual environment using anaconda:

conda create -n webui python=3.11 -y && conda activate webui 

2. Install Ollama

Ollama is a lightweight model server that manages and runs AI models locally. Choose your operating system below for installation instructions:

Linux

curl -fsSL https://ollama.com/install.sh | sh

# Verify installation
ollama --version

macOS

  1. Download the latest version from Ollama for macOS
  2. Open the downloaded .dmg file
  3. Drag Ollama to your Applications folder
  4. Launch Ollama from Applications

Windows

  1. Download the installer from Ollama for Windows
  2. Run the downloaded .exe file
  3. Follow the installation wizard
  4. Launch Ollama from the Start menu

3. Install Open WebUI

Set up the web interface using open-webui:

pip install open-webui

4. Install DeepSeek Models using Ollama

Choose your preferred model size:

# DeepSeek-R1-Distill-Qwen-1.5B
ollama run deepseek-r1:1.5b

You can install other DeepSeek models using Ollama.

# DeepSeek-R1
ollama run deepseek-r1:671b

# DeepSeek-R1-Distill-Qwen-7B
ollama run deepseek-r1:7b

# DeepSeek-R1-Distill-Llama-8B
ollama run deepseek-r1:8b

# DeepSeek-R1-Distill-Qwen-14B
ollama run deepseek-r1:14b

# DeepSeek-R1-Distill-Qwen-32B
ollama run deepseek-r1:32b

# DeepSeek-R1-Distill-Llama-70B
ollama run deepseek-r1:70b

5. Launch the Web Interface

Start the WebUI server:

open-webui serve

6. Access the Interface

  • Open your browser
  • Navigate to http://localhost:8080

Demo

After installation, access the WebUI through your browser and start interacting with DeepSeek-R1.

Nvidia Jetson Nano

DeepSeek-R1 works on edge devices like the Nvidia Jetson Nano, using only 8 GB of RAM. I tested it with 1.5b parameters, and it runs smoothly.




Enjoy Reading This Article?

Here are some more articles you might like to read next:

  • DeepSeek-R1: WebGPU-based Local Reasoning Model
  • Essential Conda Cheat Sheets for Data Scientists
  • Configure HLS Server on Windows 10/11
  • Configure DASH Server on Windows 10/11
  • Mastering GitHub with Handy Cheat Sheets